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A giant magneto impedance effect was experimentally measured on as-cast and post production treated amorphous wires 
although it takes some time due to varying measuring condition such as sample, static magnetic field and frequency. 
Measured data from different as-cast and post production treated samples was used for training of the network.  A 3-node 
input layer, 1-node output layer neural network model with 3 hidden layers and full connectivity between nodes were 
developed. A total of 1600 input vectors obtained from varied samples were available in the training set. The network was 
formed by hybrid transfer functions and 21 numbers of nodes in the hidden layers, after the performance of many models 
were tried. A set of test data, different from the training data set was used to investigate the network performance. The 
average correlation and prediction error of giant magneto impedance effect were found to be 99% and 1% for tested 
Fe4.3Co68.2 Si12.5B15 amorphous wires. 
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1. Introduction 
 
A change of high-frequency impedance of very soft 

ferromagnetic materials is called as giant magneto 
impedance (GMI) effect. The GMI effect originates in the 
skin effect as a consequence of the changes in the 
penetration depth induced by the applied field through 
modification of the transverse permeability [1,2]. The 
impedance of an amorphous wire changes strongly with a 
static magnetic field. The amplitude of the total wire 
voltage decreases under the influence of a longitudinal 
field [3]. The GMI effect depends essentially on the 
interaction between the magnetic field created by the ac 
current passing through the wire and magnetic domains 
[4]. Also it varies under the application of annealing, 
annealing with tension and magnetic field. 

The GMI effect can be experimentally on amorphous 
wires, however it takes some time due to varying 
measuring condition such as sample, magnetic field and 
frequency. Recently, artificial neural networks have 
successfully used for the prediction of magnetic 
performance in electromagnetic devices made from soft 
magnetic materials [5]. Therefore, this paper concentrates 
to predict the GMI effect for amorphous wires using 
artificial neural network (ANN). 

 
 
2. Neural network model 
 
A neural network is an interconnected assembly of the 

simple processing elements, units or nodes, whose 
functionality is loosely based on the human neuron. The 

processing ability of the network is stored in the inter-unit 
connection strengths or weights, obtained by a process of 
the adaptation to, or learning from, asset of training 
patterns. Models usually assume that computation is 
distributed over several processing units, which are 
interconnected and operate in parallel. Implicit knowledge 
is built into a neural network by training it. Some neural 
networks can be trained by being presented with typical 
input patterns. and the corresponding expected output 
patterns. The error between the actual and expected output 
is used to modify the strengths, or weights, of the 
connections between the neurons. The back-propagation 
algorithm in Eq.1 [6] is used in this study. 

 
δk = σak(tk

p-yk
p)             (1) 

 
where ak , tk

p , yk
p , δk and σ are neuron k activation, 

neuron k target pattern, neuron k output pattern, hidden 
layer neuron k error and output transfer function 
respectively. 

 
 
3. Experiment 
 
The main problem with an artificial neural network 

(ANN) model has been to establish representative training 
data, particularly when a large number of variables are 
considered as is in this research.  

The previously obtained data from different as-cast 
and post production treated samples [4] used for the 
training of the network. A 3-node input layer, 1-node 
output layer model with 3 hidden layers and full 
connectivity between nodes were developed. The input 
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parameters were frequency (f), static magnetic field (H), 
and sample (x) which is as-cast (1), furnace annealed (2), 
furnace annealed under tension (3), dc current annealed (4) 
and flash annealed under transverse magnetic field (5) 
while the output parameter was the GMI effect. 

 
 

Fig. 1. The developed neural network to predict the 
GMI effect. 

 
 
A total of 1600 input vectors obtained from varied 

samples were available in the training data. The number of 
hidden layers and neurons in each layer were determined 
through trial and error to be optimal including with 
different transfer functions as hyperbolic tangent, sigmoid 
and hybrid. After the network was trained, a better result 
was obtained from the network formed by the hyperbolic 
tangent transfer function in the hidden layer, sigmoid 
transfer function in output layer and predicted the GMI. 
The network includes three input neurons, one output 
neurons, three hidden layers with 30 neurons as shown in 
Fig.1. A set of the test data, different from the training data 
set was used to investigate the network performance. 320 
vectors for the test data were used to predict 

 
 
4. Experimental results and discussion  
 
Table 1 compares predictions and measurement of 

GMI % for Fe77.5Si7.5B15 amorphous wires at different 
frequencies. The average absolute difference for GMI 
effect is about 1 %. 
 

Table 1. Predicted and measurement GMI %. 
 

 
f(MHz) 

Experimental 
GMI% 

Predicted 
GMI% 

0.5 19.3171 19.3738 
1.0 20.6523 19.9125 
2.0 25.9875 25.8166 
3.0 28.7162 28.8350 
4.0 29.6773 29.0623 
5.0 37.9290 37.9382 
6.0 56.2437 56.1669 
7.0 44.8278 44.7110 
8.0 42.0042 42.0340 
9.0 33.2020 33.4160 

10.0 26.9453 26.7837 

The average percentage effect to prediction of GMI 
for sample type, frequency and static magnetic field are 
89.2%, 3.94% and 6.06 %, respectively, shown as Fig. 2. 

The highest ratio among the input data for affecting 
the GMI % was found to be sample type which are as-cast, 
furnace annealed, furnace annealed under tension, dc 
current annealed and flash annealed under transverse 
magnetic field amorphous wires.  
 

 
 

Fig. 2. Effect of input data’s on GMI %. 
 
     

The static magnetic field dependency of the GMI ratio 
for Co-based amorphous wires at 6 MHz is shown in              
Fig. 3.  
 

 
 

Fig. 3. Correlation between predicted and measured  
GMI% at 6 MHz. 

 

 
 

Fig. 4. Correlation of experimental and predicted GMI values. 
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The static magnetic field dependency of the Fig. 4. 

also confirms correlation between measured and  predicted 
values. 

GMI ratio for Co-based amorphous wires at 6 MHz is 
shown in Fig. 4.  

     
 
5. Conclusion 
 
The developed ANN model gives a satisfactory 

prediction GMI% for the amorphous wires within the 
range tested. The average correlation and prediction error 
were found to be 99% and 3% respectively. The model can 
be improved using expanding the data range. The results 
have indicated the modelling is a promising tool with 
potential industrial applications 
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